Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.

Identifieur interne : 004574 ( Main/Exploration ); précédent : 004573; suivant : 004575

Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.

Auteurs : Annikki Welling [Finlande] ; Thomas Moritz ; E Tapio Palva ; Olavi Junttila

Source :

RBID : pubmed:12177476

Descripteurs français

English descriptors

Abstract

Temperate zone woody plants cold acclimate in response to both short daylength (SD) and low temperature (LT). We were able to show that these two environmental cues induce cold acclimation independently by comparing the wild type (WT) and the transgenic hybrid aspen (Populus tremula x Populus tremuloides Michx.) line 22 overexpressing the oat (Avena sativa) PHYTOCHROME A gene. Line 22 was not able to detect the SD and, consequently, did not stop growing in SD conditions. This resulted in an impaired freezing tolerance development under SD. In contrast, exposure to LT resulted in cold acclimation of line 22 to a degree comparable with the WT. In contrast to the WT, line 22 could not dehydrate the overwintering tissues or induce the production of dehydrins (DHN) under SD conditions. Furthermore, abscisic acid (ABA) content of the buds of line 22 were the same under SD and long daylength, whereas prolonged SD exposure decreased the ABA level in the WT. LT exposure resulted in a rapid accumulation of DHN in both the WT and line 22. Similarly, ABA content increased transiently in both the WT and line 22. Our results indicate that phytochrome A is involved in photoperiodic regulation of ABA and DHN levels, but at LT they are regulated by a different mechanism. Although SD and LT induce cold acclimation independently, ABA and DHN may play important roles in both modes of acclimation.

DOI: 10.1104/pp.003814
PubMed: 12177476
PubMed Central: PMC166751


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.</title>
<author>
<name sortKey="Welling, Annikki" sort="Welling, Annikki" uniqKey="Welling A" first="Annikki" last="Welling">Annikki Welling</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Sciences, Division of Genetics, and Institute of Biotechnology, University of Helsinki, Finland. welling@operoni.helsinki.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Biomedical Sciences, Division of Genetics, and Institute of Biotechnology, University of Helsinki</wicri:regionArea>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
<orgName type="university">Université d'Helsinki</orgName>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</author>
<author>
<name sortKey="Palva, E Tapio" sort="Palva, E Tapio" uniqKey="Palva E" first="E Tapio" last="Palva">E Tapio Palva</name>
</author>
<author>
<name sortKey="Junttila, Olavi" sort="Junttila, Olavi" uniqKey="Junttila O" first="Olavi" last="Junttila">Olavi Junttila</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12177476</idno>
<idno type="pmid">12177476</idno>
<idno type="doi">10.1104/pp.003814</idno>
<idno type="pmc">PMC166751</idno>
<idno type="wicri:Area/Main/Corpus">004611</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004611</idno>
<idno type="wicri:Area/Main/Curation">004611</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004611</idno>
<idno type="wicri:Area/Main/Exploration">004611</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.</title>
<author>
<name sortKey="Welling, Annikki" sort="Welling, Annikki" uniqKey="Welling A" first="Annikki" last="Welling">Annikki Welling</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Sciences, Division of Genetics, and Institute of Biotechnology, University of Helsinki, Finland. welling@operoni.helsinki.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Biomedical Sciences, Division of Genetics, and Institute of Biotechnology, University of Helsinki</wicri:regionArea>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
<orgName type="university">Université d'Helsinki</orgName>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</author>
<author>
<name sortKey="Palva, E Tapio" sort="Palva, E Tapio" uniqKey="Palva E" first="E Tapio" last="Palva">E Tapio Palva</name>
</author>
<author>
<name sortKey="Junttila, Olavi" sort="Junttila, Olavi" uniqKey="Junttila O" first="Olavi" last="Junttila">Olavi Junttila</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Abscisic Acid (pharmacology)</term>
<term>Acclimatization (physiology)</term>
<term>Cold Temperature (MeSH)</term>
<term>Desiccation (MeSH)</term>
<term>Freezing (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (radiation effects)</term>
<term>Heat-Shock Proteins (metabolism)</term>
<term>Hybrid Vigor (physiology)</term>
<term>Light (MeSH)</term>
<term>Photoperiod (MeSH)</term>
<term>Phytochrome (genetics)</term>
<term>Phytochrome (physiology)</term>
<term>Phytochrome A (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stems (physiology)</term>
<term>Salicaceae (genetics)</term>
<term>Salicaceae (growth & development)</term>
<term>Salicaceae (metabolism)</term>
<term>Seasons (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation (physiologie)</term>
<term>Acide abscissique (métabolisme)</term>
<term>Acide abscissique (pharmacologie)</term>
<term>Basse température (MeSH)</term>
<term>Congélation (MeSH)</term>
<term>Dessiccation (MeSH)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Lumière (MeSH)</term>
<term>Photopériode (MeSH)</term>
<term>Phytochrome (génétique)</term>
<term>Phytochrome (physiologie)</term>
<term>Phytochrome A (MeSH)</term>
<term>Protéines du choc thermique (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (effets des radiations)</term>
<term>Saisons (MeSH)</term>
<term>Salicaceae (croissance et développement)</term>
<term>Salicaceae (génétique)</term>
<term>Salicaceae (métabolisme)</term>
<term>Tiges de plante (physiologie)</term>
<term>Vigueur hybride (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phytochrome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Heat-Shock Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phytochrome</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Protéines du choc thermique</term>
<term>Protéines végétales</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide abscissique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Acclimatation</term>
<term>Feuilles de plante</term>
<term>Phytochrome</term>
<term>Tiges de plante</term>
<term>Vigueur hybride</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acclimatization</term>
<term>Hybrid Vigor</term>
<term>Phytochrome</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Desiccation</term>
<term>Freezing</term>
<term>Light</term>
<term>Photoperiod</term>
<term>Phytochrome A</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Congélation</term>
<term>Dessiccation</term>
<term>Lumière</term>
<term>Photopériode</term>
<term>Phytochrome A</term>
<term>Saisons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Temperate zone woody plants cold acclimate in response to both short daylength (SD) and low temperature (LT). We were able to show that these two environmental cues induce cold acclimation independently by comparing the wild type (WT) and the transgenic hybrid aspen (Populus tremula x Populus tremuloides Michx.) line 22 overexpressing the oat (Avena sativa) PHYTOCHROME A gene. Line 22 was not able to detect the SD and, consequently, did not stop growing in SD conditions. This resulted in an impaired freezing tolerance development under SD. In contrast, exposure to LT resulted in cold acclimation of line 22 to a degree comparable with the WT. In contrast to the WT, line 22 could not dehydrate the overwintering tissues or induce the production of dehydrins (DHN) under SD conditions. Furthermore, abscisic acid (ABA) content of the buds of line 22 were the same under SD and long daylength, whereas prolonged SD exposure decreased the ABA level in the WT. LT exposure resulted in a rapid accumulation of DHN in both the WT and line 22. Similarly, ABA content increased transiently in both the WT and line 22. Our results indicate that phytochrome A is involved in photoperiodic regulation of ABA and DHN levels, but at LT they are regulated by a different mechanism. Although SD and LT induce cold acclimation independently, ABA and DHN may play important roles in both modes of acclimation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12177476</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>12</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>129</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2002</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>1633-41</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Temperate zone woody plants cold acclimate in response to both short daylength (SD) and low temperature (LT). We were able to show that these two environmental cues induce cold acclimation independently by comparing the wild type (WT) and the transgenic hybrid aspen (Populus tremula x Populus tremuloides Michx.) line 22 overexpressing the oat (Avena sativa) PHYTOCHROME A gene. Line 22 was not able to detect the SD and, consequently, did not stop growing in SD conditions. This resulted in an impaired freezing tolerance development under SD. In contrast, exposure to LT resulted in cold acclimation of line 22 to a degree comparable with the WT. In contrast to the WT, line 22 could not dehydrate the overwintering tissues or induce the production of dehydrins (DHN) under SD conditions. Furthermore, abscisic acid (ABA) content of the buds of line 22 were the same under SD and long daylength, whereas prolonged SD exposure decreased the ABA level in the WT. LT exposure resulted in a rapid accumulation of DHN in both the WT and line 22. Similarly, ABA content increased transiently in both the WT and line 22. Our results indicate that phytochrome A is involved in photoperiodic regulation of ABA and DHN levels, but at LT they are regulated by a different mechanism. Although SD and LT induce cold acclimation independently, ABA and DHN may play important roles in both modes of acclimation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Welling</LastName>
<ForeName>Annikki</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Division of Genetics, and Institute of Biotechnology, University of Helsinki, Finland. welling@operoni.helsinki.fi</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moritz</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Palva</LastName>
<ForeName>E Tapio</ForeName>
<Initials>ET</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Junttila</LastName>
<ForeName>Olavi</ForeName>
<Initials>O</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051942">Phytochrome A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11121-56-5</RegistryNumber>
<NameOfSubstance UI="D010834">Phytochrome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>134711-03-8</RegistryNumber>
<NameOfSubstance UI="C070556">dehydrin proteins, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003890" MajorTopicYN="N">Desiccation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005615" MajorTopicYN="N">Freezing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006823" MajorTopicYN="N">Hybrid Vigor</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="Y">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010834" MajorTopicYN="N">Phytochrome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051942" MajorTopicYN="N">Phytochrome A</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031308" MajorTopicYN="N">Salicaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12177476</ArticleId>
<ArticleId IdType="doi">10.1104/pp.003814</ArticleId>
<ArticleId IdType="pmc">PMC166751</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1970 Sep 25;169(3952):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1990 Jun;79(6):801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6326095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Sep;188(2):265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Dec;94(4):1682-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Jun;53(6):783-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Jan;33(1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9037159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Oct;209(4):377-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 May;43(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10949369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 May;120(1):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1989 May;77(5):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1972 Aug;50(2):262-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Apr;10(4):623-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9548987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1991;25:389-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1812812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Feb;71(2):362-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1971 Jan;47(1):98-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Apr;104(4):1341-1349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:377-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Mar 25;17(6):2362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2468132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
<region>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Junttila, Olavi" sort="Junttila, Olavi" uniqKey="Junttila O" first="Olavi" last="Junttila">Olavi Junttila</name>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
<name sortKey="Palva, E Tapio" sort="Palva, E Tapio" uniqKey="Palva E" first="E Tapio" last="Palva">E Tapio Palva</name>
</noCountry>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Welling, Annikki" sort="Welling, Annikki" uniqKey="Welling A" first="Annikki" last="Welling">Annikki Welling</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004574 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004574 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12177476
   |texte=   Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12177476" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020